Contents

Preface	
Chapter 1. Differentiable Manifolds	1
1. Basic Definitions	1
2. Differentiable Maps	5
3. Tangent Vectors	6
4. The Derivative	8
5. The Inverse and Implicit Function Theorems	11
6. Submanifolds	12
7. Vector Fields	16
8. The Lie Bracket	19
9. Distributions and Frobenius Theorem	27
10. Multilinear Algebra and Tensors	29
11. Tensor Fields and Differential Forms	35
12. Integration on Chains	41
13. The Local Version of Stokes' Theorem	43
14. Orientation and the Global Version of Stokes' Theorem	45
15. Some Applications of Stokes' Theorem	51
Chapter 2. Fiber Bundles	57
1. Basic Definitions and Examples	57
2. Principal and Associated Bundles	60
3. The Tangent Bundle of S^n	65
4. Cross-Sections of Bundles	67
5. Pullback and Normal Bundles	69
6. Fibrations and the Homotopy Lifting/Covering Properties	73
7. Grassmannians and Universal Bundles	75
Chapter 3. Homotopy Groups and Bundles Over Spheres	81
1. Differentiable Approximations	81
2. Homotopy Groups	83
3. The Homotopy Sequence of a Fibration	88
4. Bundles Over Spheres	94
5. The Vector Bundles Over Low-Dimensional Spheres	97
Chapter 4. Connections and Curvature	103
1. Connections on Vector Bundles	103
2. Covariant Derivatives	109
3. The Curvature Tensor of a Connection	114

CONTENTS

4.	Connections on Manifolds	120
5.	Connections on Principal Bundles	125
Chapt	er 5. Metric Structures	131
1.	Euclidean Bundles and Riemannian Manifolds	131
2.	Riemannian Connections	133
3.	Curvature Quantifiers	141
4.	Isometric Immersions	145
5.	Riemannian Submersions	147
6.	The Gauss Lemma	155
7.	Length-Minimizing Properties of Geodesics	160
8.	First and Second Variation of Arc-Length	166
9.	Curvature and Topology	171
10.	Actions of Compact Lie Groups	173
Chapt	er 6. Characteristic Classes	177
1.	The Weil Homomorphism	178
2.	Pontrjagin Classes	181
3.	The Euler Class	184
4.	The Whitney Sum Formula for Pontrjagin and Euler Classes	189
5.	Some Examples	191
6.	The Unit Sphere Bundle and the Euler Class	199
7.	The Generalized Gauss-Bonnet Theorem	203
8.	Complex and Symplectic Vector Spaces	207
9.	Chern Classes	215
Biblio	graphy	221
Index		223

viii