TABLE OF CONTENTS

PR	PROLOGUE		
CF	HAPTER ONE		
BA	ACKGROUND AND CONTEXT		
Su	mmary	3	
	TALUM: a general introduction	4	
	A certain type of TALUM research	6	
	The TALUM studies the book draws on	9	
CF	HAPTER TWO		
M	ETHOD, PROCESS AND PRESENTATION		
Su	mmary	15	
1.	Data samples and M	16	
2.	The dialogic format		
	The Narrative Approach	18	
	From interview transcripts to Dialogue:		
	an application of the Narrative Approach	24	
3.	Style, format and thematic breakdown of Chapters $3 - 8$	29	
N	DTE TO READER:		
A	RECOMMENDATION ON HOW TO READ CHAPTERS 3-8	39	
Cŀ	HAPTER THREE		
Tŀ	IE ENCOUNTER WITH FORMAL MATHEMATICAL REASONING:		
CC	DNCEPTUALISING ITS SIGNIFICANCE AND ENACTING ITS		
TE	BCHNIQUES		
Su	mmary	41	
Ep	isodes		
1.	The tension between familiar (numerical, concrete) and unfamiliar (rigorous,		
	abstract): resorting to the familiarity of number	42	
2.	The tension between general and particular:	48	
	Constructing examples	49	
	Applying the general to the particular	51	
3.	Using definitions towards the construction of mathematical arguments:		
	Weaving the use of definitions		
	into the construction of a mathematical argument	57	
	Making the fine choice		
	between algebraic manipulation and employment of a definition	60	
4.	Logic as building block of mathematical arguments: reconciling with		
	inconclusiveness	64	

5.	Proof by Contradiction	
	Spotting contradiction	70
	Syndrome of the Obvious	79
6.	Proof by Mathematical Induction: from <i>n</i> to <i>n</i> +1	83
7.	Proof by Counterexample: the variable effect of different types of	
	counterexample	89
Sp	ecial Episodes	
1.	School Mathematics, UK	93
2.	Inequalities	102
3.	Mathematical reasoning in the context of Group Theory	103
	Algebra / Geometry	106
Cł	HAPTER FOUR	
M	EDIATING MATHEMATICAL MEANING	
TH	IROUGH VERBALISATION, SYMBOLISATION AND VISUALISATION	1
	mmary	111
	visodes	
	To appear and to be:	
	Conquering the 'genre' speech of university mathematics	112
1.	Strings of Symbols and Gibberish – Symbolisation and Efficiency	120
	Desperate juggling of axioms and random mathematics	121
	To-ing and fro-ing between mathematics and language	125
2.	Premature Compression:	
	Why is $det(aI_n) = a^n$ true?	134
	Why is $xox = xox^{-1} \Rightarrow x = x^{-1}$ true?	136
3.	Visualisation and the role of diagrams	139
	Undervalued or Absent Verbalisation	
	and the Integration of Words, Symbols and Diagrams	151
Sp	ecial Episodes	
	The Group Table	152
	ıt-takes	
1.	Typed Up	159
CI	IAPTER FIVE	
	IE ENCOUNTER WITH THE CONCEPT OF FUNCTION	
Su	mmary	161
	isodes	
	Concept Images and Concept Definition	
	Domineering presences (function-as-formula),	
	conspicuous absences (domain / range)	162
	The Students' Turbulent Relationship with the Concept Definition	166
2.	Relationship with Graphs: Attraction, Repulsion, Unease and Uncertainty	168

3.	The Troubling Duality at the Heart of a Concept:	
	Function as Process, Function as Object	172
Sp	ecial Episodes	
1.	The Tremendous Function-Lookalike That is Tanx	176
2.	Polynomials and the Deceptive Familiarity of Essentially Unknown Objects	177
	ıt-takes	
1.	History Relived	179
	Evocative Terms for 1-1 and Onto	180
3.	R ^R : A Grotesque and Vulgar Symbol?	180
CF	HAPTER SIX	
TH	HE ENCOUNTER WITH THE CONCEPT OF LIMIT	
Su	mmary	181
	pisodes	
	Beginning to Understand the Necessity	
	For A Formal Definition of Convergence	182
2.	Beyond the 'Formalistic Nonsense':	
	Understanding the Definition of Convergence	
	Through Its Verbalisation and Visualisation	
	– Symbolisation As A Safer Route?	185
3.	The Mechanics of Identifying and Proving A Limit	
	In Search of N	193
	Identifying the Limit of a Sequence	194
Sp	ecial Episodes	
-	Ignoring the 'Head' of a Sequence	195
	it-takes	170
	\geq or $> N?$	199
	Series	200
	Continuity and Differentiability	200
5.	Continuity and Differentiability	200
-	HAPTER SEVEN	
	NDERGRADUATE MATHEMATICS PEDAGOGY	205
	mmary	205
-	pisodes	
1.	Interaction / Participation	
	Enhancing students' mathematical expression	200
	through interactive interrogation of their thinking	206
	Building students' understanding through 'Socratic dialogue'	206
	Facilitating students' realisation of their responsibility	
	towards their own learning	207
	Benefiting from the rich environment of a one-to-one tutorial	208
	Students' resistance to participatory teaching	212
_	Conditioning interaction effectively	212
	Introducing, contextualising the importance of new ideas	215
3.	Concept Image Construction	217
1	Abstraction/Pigor Vs Congratization Intuition and Examplification	

TABLE OF CONTENTS

	Abstraction	220	
	Formalism		
	a. Fostering the significance of mathematical literacy	224	
	b. The fuzzy didactical contract of university mathematics	229	
	Numerical experiments	234	
	Pictures		
	a. The pedagogical potential, and the strongly personal nature,		
	of pictures	237	
	b. Building students' understanding of convergence		
	through the use of visual representations	238	
	c. Strengthening students' understanding of injective		
	and surjective functions using Venn diagrams	239	
	d. Strengthening students' understanding of functional	-07	
	properties through construction and examination		
	of function graphs	240	
	e. Negotiating meanings and appropriateness of pictures	240	
	as a means of strengthening students' concept images	241	
	in Group Theory	241	
	The 'toolbox' perspective	247	
	The skill and art in trial-and-error: making appropriate / clever	• • •	
	choices when deciding the steps of a proof	248	
Special Epi			
	ng without examples	250	
2. Do not	Teach Indefinite Integration	251	
3. Teachir	ng of functions, process – object, polynomials	253	
4. Rules o	fattraction	254	
5. Content	t coverage	255	
Out-takes	č		
	arning happen anyway?	255	
CHAPTER			
,	YET CRUCIAL:		
	ATIONSHIP BETWEEN MATHEMATICIANS AND		
	HERS IN MATHEMATICS EDUCATION		
Summary		257	
Episodes			
1. Benefit	S		
	Benefits from using mathematics education research	258	
	Benefits from engaging with mathematics education research	260	
2. Reflecti	ion and critique of the practices of RME		
- there's something about the way you			
	Do Research (an evaluation of Qualitative Inquiry		
	and conditions under which it could work for mathematicians)		
		264	
	acurrently		
	b and other ways you could be doing it!	273	

TABLE OF CONTENTS	xiii
Theorise (or: on the R C Moore diagram) Write up Disseminate	276 280 281
Special Episodes 1. The Reviews	285
EPILOGUE	293
POST-SCRIPT Amongst Mathematicians: <i>Making of, Coming to be</i> Beginnings Initial proposal Flash forward Back to initial planning A modified proposal First trials and reviews	297 297 299 302 304 304 308
BIBLIOGRAPHY	311
THEMATIC INDEX: Mathematical Topics	333
THEMATIC INDEX: Learning and Teaching	335
AUTHOR INDEX	337