Contents

Part I Concepts of Brain Theory

1	Lettv	rin's Challenge	3		
2	Issues Concerning the Nature of Neuronal Response				
	2.1	Impressions Gained from Histograms and Raster Displays	5		
	2.2	Cortical Firing Should Be Nearly Periodic – So Why Isn't It?	6		
	2.3	Sensitivity of Neurons to Synchronized Volleys of Spikes	8		
	2.4	Notes on Plastic Change at the Synaptic Level	9		
3	"Events" in the Brain				
	3.1	The Brain Viewed as a Logic Network Without			
		a "System Clock"	11		
	3.2	Looking for "Surprising Events" in the Neuronal			
		Input Stream			
	3.3	Poisson Surprise as a Diagnostic Tool	13		
	3.4	Critique of Brain Models Relying on Average Spike Rates	14		
	3.5	The LTP Is Probably the Marking of Synapse Sets			
		for Later Use	14		
4	Cell	Assemblies	17		
	4.1	Ignition	17		
	4.2	Synchronized "One-Spike" Ignitions	18		
	4.3	Ignitions and the Central Bins of Cross-Correlograms	19		
	4.4	Ignitions and Single-Unit Recording	20		
	4.5	Why Myelin Is Indispensable to Nervous Function?	20		
5	Surprise, Statistical Inference,				
	and (Conceptual Notes	23		
	5.1	Spike Coincidence Interpreted in Terms of Surprise	24		
	5.2	Local Knowledge and Its Relation to Information	24		
	5 3	The Fundamental Law of Brain Theory	25		

xii Contents

	5.4	Parsing the Network into Localities	25	
	5.5	Brain Modeling Viewed as "Reverse Engineering"		
6 A New Term: Ignitions Which "Reach"				
	or "Don't Reach" a Neuron			
	6.1	How Many Synapses Does It Take to Reach a Neuron?	28	
	6.2	Axons, Where They Arborize, Can Probably Contact		
		Most Neurons	28	
	6.3	A Good Unit of Cortical Distance: The Width of a Column	30	
	6.4	Axonal Branching Near the Cell Body	31	
	6.5	Retinotopic Mapping	31	
	6.6	Axons Which Confine Their Branching to a Few Columns	32	
7	mation Loops, Powered by Self-Ignitions			
	7.1	The Principle of Overwhelming Odds	35	
	7.2	Prime Mover Networks at the "Sending End"		
		of Surprising Signals	35	
	7.3	Confirmation Loops and the Classical "Reverberations"	37	
8		unicating "Relatedness" Through Time-Linked Ignitions	39	
	8.1	Time-Linked Ignitions Viewed as Sentences	40	
	8.2	Joining Sentences on Shared Nouns	40	
9		nal Firing: Broadcasting a Shape Through Time-Linked		
	_	ns	43	
	9.1	Labeled Lines: The Messenger Is the Message	43	
	9.2	Direction-Coded Cells	44	
	9.3	Relational Firing: Two Cell Groups Broadcasting a Relation	46	
	9.4	Visual Sentences Conveying that Two Sides Meet in One Point	47	
	9.5	"Kernel Cells," Used in Joining Co-ignitions	.,	
	7.0	on Shared Points	48	
	9.6	Visual Sentences Communicating a Triangular Shape	50	
	9.7	"Contour Cells" and "Direction-Coded Cells"	52	
	9.8	Broadcasting More Complex Shapes		
	9.9	The Role of Retinotopy and Connectivity	57	
	9.10	Confirmation Loops and the Epochs		
	,,,,	on High Poisson Surprise	58	
	9.11	3D Extension of Polygon Graphics		
	9.12	Distributed Knowledge	59	
	7.12	Distributed Milowiedge	3)	
Par	t II Co	ontour Strings and the Contour Wave		
10	Enter t	he Contour String	63	
	10.1 The Issue of Enabling Communication Between			
		Parts of an Image	63	
			20	

Contents xiii

	10.2	Cells Which Link Up to Pass Waves When Co-stimulated	64
	10.3	*	64
	10.4		65
	10.5	Only the Simple Cell Is Suitable for Conducting	
		the Contour Waves	65
	10.6	The Need for Drome-Selectivity in Simple Cells	65
	10.7		66
	10.8		67
	10.9		68
11	Drif	t of the Retinal Image	71
	11.1	Tracking the Nouns Used in Joining Sentences	71
	11.2	The Word "Fixation" Is a Misnomer	72
	11.3	A Period of Fixation Is a Period of Tracking	72
12	The	ory of the Simple Cell	75
	12.1	Simple Cells, When Detecting LGN Input, Must Link Up Fast	75
	12.2		76
	12.3	. 1	
		Another	76
	12.4	1 7 1	77
	12.5	The Preparation of Simple Cells for Their Role in Contour Waves	79
13		ory of the Complex Cell	85
	13.1	Tracking	85
	13.2		86
	13.3	, 0	88
	13.4	1 0 1	88
	13.5	1 1	
		Wave Responses	90
	13.6	How the Complex Cell Works	91
14		ner Processing: Theory of the Hypercomplex Cell	93
	14.1	Propagation of Contour Waves Toward and Away from Corners	93
	14.2		94
	14.3	71 1	98
	14.4	Comparing Hypercomplex and CS Simple Cells	99
Par	t III	Nodes, Links, Bridgeheads	
15	Nod	es on Contour Strings	
	15.1	The Problem of Slow Propagation	
	15.2	The Stria of Gennari	
	15.3		
	15.4	1 6	
	15.5	A Note on the Fiber Requirement of Visual Integration	105

xiv Contents

	15.6	The Plac	ement of Nodes on a Contour
	15.7	A Link E	Between Nodes Has a <i>Bridgehead</i> on Each Node 107
16			Unstable Networks Made
	to Suj	pport Trac	k ing
	16.1		iting Networks Which Continually Gain
			e Cells
	16.2	Active L	inkage: Two Bridgeheads Repeatedly Co-igniting 110
	16.3	Detecting	g When a Link Becomes Weak111
	16.4	The Linl	kage Between Tracking, Metric Relations, and
		Long-Te	rm Storage
	16.5	Tracking	a Contour Whose Shape Changes
	16.6	Restoring	g a Weakened Link117
17	Why	Is the Dr	ifting Retinal Image Helpful
	in Per	ception?	
	17.1	The Grov	wth of Nodes in the Course of Contour Drift 122
	17.2	Kernel C	ells in Multi-column Nodes
18	The 1	Maintenar	ace of Moving Nodes
	and B	ridgehead	s
	18.1	Adding N	New Neurons to a Drifting Node
	18.2	Spread o	f a Bridgehead Sideways, Along the Contour
	t IV] f Conto	_	nes and the Integration
U	i Conu	Juis	
19	Maki		st Links by Crawling Along a Contour String 141
	19.1	Outline of	of the Continuity Detection and Contour Linkup
		19.1.1	Nodes and Their Initial Ignitions
		19.1.2	The Cells as Individuals Cannot See
			the Whole Picture
		19.1.3	How a "Grand Design" Enables Cells to Convey
			More Than They Know 143
		19.1.4	Localities Monitoring the Moving Wave Via Long
			Axons
		19.1.5	The Smallest Cell Group Able to Trade Knowledge:
			The Node
		19.1.6	Monitoring Single Contour Waves in Isolation:
			The "Tracer Wave"
		19.1.7	Preventing Extra Waves from Being Traced:
			The "Second Enable"
		19.1.8	Satisfying the Surprise Requirement of "Second
			Enable": Warmup Runs

Contents xv

	19.1.9	Tracer Waves Continuous with an "Arrival Volley"			
		from the Next Node			
	19.1.10	How Can the Base Node Recognize the Arrival			
	10 1 11	Volleys?			
	19.1.11	Saving the Detected Continuity in the Form of			
	10 1 10	Hardware			
	19.1.12	Node A Knows that the Reaching Is Bidirectional;			
	10.1.10	So Does Node B			
	19.1.13	Linkup and Active Link Operation			
19.2		g Modes of Neurons			
19.3		mes: Goal-Directed Organization Without a Leader 151			
19.4		al Specificity of Contour Cells: R-cells and L-cells 152			
19.5		n the Drawings Describing Contour Linkup 152			
19.6		Interactions During Tracer Runs and Linkup 156			
19.7		y Detection from the Standpoint of the Base Cells 161			
19.8		dy Processing" of Cells Before They Join a Node 164			
19.9		f a Linkup, with Each Phase "hammered in"			
		tions			
19.10		ng Tracer Waves Beyond the First Node			
		ounter			
19.11	Recogniti	on of Crosstalk Between Two Contours 172			
Using Existing Links to Make New Links on the Same Contour					
20.1		of Using Two Links to Make a Third Link			
	on the Same Contour				
	20.1.1	Relation "A on Same Contour as B" is Transitive;			
		But There is a Catch			
	20.1.2	Linkup of Two Nodes Must Start from a Third, with			
		Links to Both			
	20.1.3	Three-Node Ignitions			
	20.1.4	Making the Triple Ignitions Reach the Satellite Nodes 177			
	20.1.5	The Issue of Limiting the Search Volleys to a Range of Directions			
	20.1.6	How Do Nodes A and C Know that They Are			
		Supposed to Link Up?			
	20.1.7	The Beginning of the Bridgeheads of an A–C Link 178			
	20.1.8	The Challenge of Making the Bridgeheads Ignitable 179			
	20.1.9	Gradual Growth of the New Bridgeheads 179			
	20.1.10	The Cessation of Omnidirectional Volleys 180			
	20.1.11	Setting Up Mutual Excitation Between Nodes			
		A and C			
	20.1.12	The Next Step Is to Separate the A-B Link and B-C			

xvi Contents

		20.1.13	How Do the Bridgeneads in B Know to Undo Their	
			Linkage?	181
		20.1.14	Restoring the A–B Link and B–C Link	
		20.1.15	Why Not Just Start a Free-for-All of Echolocation?	183
	20.2	g a Long Link to the Next Node on a Contour	183	
		20.2.1	Node-Level Description of the Linkup Step	184
		20.2.2	Description of the Linkup Step in More Detail	187
21	Comp	leting a Tr	iangle of Links	199
	21.1			
		_	pot "Open" Triangles: The Three-Element Problem	
22	All-to	-All Linku	p on Smaller Shapes, Utilizing Chain Ignitions	207
			inate Linkup of All Nodes	
Clo	sing Re	emarks		211
Ref	erences	S		213
Ind	ex			219