Contents

Part I Redox Systems via d,π -Conjugation

1	Conjugated Complexes with Quinonediimine Derivatives	2
		3
1.1		4
1.2	Architecturally Controlled Formation	-
1.0	of Conjugated Complexes with 1,4-Benzoquinonedilmines	5
1.3	Redox-Switching Properties of Conjugated Complexes	1 -
	with 1,4-Benzoquinonedilmines	17
1.4	Conclusion	24
1.5	References	25
2	Realizing the Ultimate Amplification	
	in Conducting Polymer Sensors:	
	Isolated Nanoscopic Pathways	
	Timothy M. Swager	29
2.1	Dimensionality in Molecular-Wire Sensors	29
2.2	Analyte-Triggered Barrier Creation in Conducting Polymers	32
2.3	Isolated Nanoscopic Pathways	34
2.4	Langmuir-Blodgett Approaches to Nanofibrils	34
2.5	Molecular Scaffolds for the Isolation of Molecular Wires	37
2.6	Summary and Future Prospects	43
2.7	References	43
3	Metal-Containing π -Conjugated Materials	
	Michael O. Wolf	45
3.1	Introduction	46
3.1.1	π -Conjugated Materials	46
3.1.2	Nanomaterials	46
3.2	Metal-Complex-Containing Conjugated Materials	47
3.2.1	Preparation	47
3.2.2	Properties	49
3.3	Metal-Nanoparticle-Containing Conjugated Materials	51
3.3.1	Preparation	51

3.3.2	Properties	51
3.4	Applications	52
3.5	Conclusions	53
3.6	References	53
4	Redox Active Architectures and Carbon-Rich Ruthenium Complexes as Models for Molecular Wires	
	Stéphane Rigaut, Daniel Touchard, Pierre H. Dixneuf	55
4.1	Introduction	56
4.2	Ruthenium Allenylidene and Acetylide Building Blocks:	57
121	Sunthatic Doutes	57
4.2.1	Paday Properties	57
4.2.2	Ovidation of Buthanium Matal Acatulidase	00
4,2,2,1	Stable Du ^{II} /Du ^{III} Systems and a New Poute	
	to Allenvlidene Metal Complexes	60
1222	Paduction of Matal Allanylidanes:	00
4.2.2.2	Access to Stable "Organic" Padicals and a Poute to Acetylides	61
13	Recess to Stable Organic Radicals and a Route to Accivities.	63
4.3	A Binuclear Bis Acetylide Puthenium Complex	63
4.3.1	Ric Allenylidene Bridges Linking Two Buthenium Complexes	64
4.3.2	C - Bridged Binuclear Buthanium Complexes	67
4.3.3	Connection of Two Carbon Dich Chains	07
4.4	with the Ruthenium System	71
4 5	Trimetallic and Oligometric Metal Complexes	/1
1.5	with Carbon-Rich Bridges	74
46	Star Organometallic-Containing Multiple Identical Metal Sites	77
4 7	Conclusion	79
4.8	References	79
1.0		,,
5	Molecular Metal Wires Built from a Linear Metal Atom Chain	
	Supported by Oligopyridylamido Ligands Chan Yu Yoh, Chich Chick Wang, Chun Haian Chan	
	Chen-Iu Ien, Chin-Chien Wung, Chun-fisien Chen,	05
5 1	Snie-Ming Peng	83 06
5.1	Synthesis of Olizonyuidylamina Lizonda	00
5.Z	Dimension by Solf Complementary Hydrogen Bonding	0/
5.5 E 4	Complexition of Oligonyridylamina Liganda	90
5.4	Mono and Dinugulaar Complexes	91
5.5	Structures of Linear Multipuclear Nickel Complexes	91
5.0	Structures of Linear Multinuclear Cobalt Complexes	92 09
5.0	Structures of Linear Multinuclear Chromium Complexes	70 100
5.0	Structures of Triguthanium and Trighadium Complexes	100
J.7 5 10	Complexes of Modified Ligende	103
5.10	Complexes of Moullied Ligands	104

5.11 5.12 5.13 5.14	Electrochemical Properties of the Complexes105Scanning Tunneling Microscopy Studies112Summary114References115
6	Multielectron Redox Catalysts in Metal-Assembled Macromolecular Systems
	Takane Imaoka, Kimihisa Yamamoto 119
6.1	Introduction 119
6.2	Multielectron Redox Systems 120
6.3	Multinuclear Complexes as Redox Catalysts 122
6.4	Macromolecule-Metal Complexes 123
6.5	Metal Ion Assembly on Dendritic Macromolecules 124
6.6	Conclusion 129
6.7	References 129

Part II Redox Systems via Coordination Control

7	Triruthenium Cluster Oligomers that Show Multistep/Multielectron Redox Behavior		
	Tomohiko Hamaguchi, Tadashi Yamaguchi, Tasuku Ito 133		
7.1	Introduction 133		
7.2	Syntheses of Oligomers 1 and 2 135		
7.3	Redox Behavior of 1 and 2 136		
7.4	Conclusion		
7.5	References		
8	Molecular Architecture		
	of Redox-Active Multilayered Metal Complexes		
	Based on Surface Coordination Chemistry		
	Masa-aki Haga 141		
8.1	Introduction 141		
8.2	Fabrication of Multilayer Nanoarchitectures		
	by Surface Coordination Chemistry 142		
8.2.1	Layer-by-Layer Assembly on Solid Surfaces 142		
8.2.2	Molecular Design of Anchoring Groups		
	for Control of Molecular Orientation on Surfaces 143		
8.2.3	Molecular Design of Redox-Active Metal Complex Units		
	for the Control of Energy Levels on Surfaces		
8.3	Chemical Functions		
	of Redox-Active Multilayered Complexes on Surface 148		
8.3.1	Electron Transfer Events in Multilayer Nanostructures 148		

8.3.2	Combinatorial Approach to Electrochemical Molecular Devices
	in a Multilaver Nanostructure on Surfaces
8.3.3	Surface DNA Trapping by Immobilized Metal Complexes
	with Intercalator Moiety Toward Nanowiring
8.4	Conclusion
8.5	References 153
9	Programmed Metal Arrays by Means
	of Designable Biological Macromolecules
	Kentaro Tanaka, Tomoko Okada, Mitsuhiko Shionoya 155
9.1	Introduction 155
9.2	DNA-Directed Metal Arrays 156
9.2.1	Metal-Mediated Base Pairing in DNA 156
9.2.2	Single-Site Incorporation
	of a Metal-Mediated Base Pair into DNA 157
9.2.3	Discrete Self-Assembled Metal Arrays in DNA 159
9.3	Peptide-Directed Metal Arrays 161
9.3.1	Design Concept 161
9.3.2	Heterogeneous Metal Arrays Using Cyclic Peptides 162
9.3.3	Metal Ion Selectivity in Supramolecular Complexation 163
9.4	Conclusion 164
9.5	References 164
10	Metal-Incorporated Hosts for Cooperative
	and Responsive Recognition to External Stimulus
	Tatsuya Nabeshima, Shigehisa Akine 167
10.1	Introduction 167
10.2	Pseudomacrocycles
	for Cooperative Molecular Functional Systems 168
10.3	$Oligo(N_2O_2$ -Chelate) Macrocycles
10.3.1	Design of Macrocyclic Oligo(N ₂ O ₂ -Chelate) Ligands and Metallohosts
10.3.2	Synthesis and Structure of Tris(N ₂ O ₂ -Chelate) Macrocycles 173
10.4	Acyclic Oligo(N ₂ O ₂ -Chelate) Ligands
10.4.1	Design of Acyclic Oligo(N ₂ O ₂ -Chelate) Ligands 174
10.4.2	Complexes of a New N ₂ O ₂ -Chelate Ligand, Salamo 175
10.4.3	Synthesis, Structure, and Properties
10.5	Conclusion 177
10.5	References 177
10.0	Acterences 1//

11	Synthesis of Poly(binaphthol) via Controlled Oxidative Coupling
	Shigeki Habaue, Bunpei Hatano 179
11.1	Introduction 179
11.2	Asymmetric Oxidative Coupling
	with Dinuclear Metal Complexes 181
11.3	Oxidative Coupling Polymerization of Phenols 183
11.4	Oxidative Coupling Polymerization
	of 2,3-Dihydroxynaphthalene 184
11.5	Conclusion 188
11.6	References

Part III Redox Systems via Molecular Chain Control

12	Nano Meccano
	Yi Liu, Amar H. Flood, J. Fraser Stoddart 193
12.1	Introduction 194
12.2	Redox-Controllable Molecular Switches in Solution 196
12.2.1	Bistable [2]Catenanes 196
12.2.2	Bistable [2]Rotaxanes 197
12.2.3	Self-Complexing Molecular Switches 198
12.3	Application of Redox-Controllable Molecular Machines
	in Electronic Devices 201
12.4	Application of Redox-Controllable Molecular Machines
	in Mechanical Devices 204
12.4.1	Switching in Langmuir–Blodgett Film 205
12.4.2	Molecular Machines Functioning as Nanovalves 207
12.4.3	Artificial Molecular Muscles 208
12.5	Conclusions 211
12.6	References 212
13	Through-Space Control of Redox Reactions
	Using Interlocked Structure of Rotaxanes
	Nobuhiro Kihara, Toshikazu Takata 215
13.1	Introduction
13.2	Redox Behavior and Conformation
	of Ferrocene-End-Capped Rotaxane 217
13.3	Reduction of Ketone by Rotaxane
	Bearing a Dihydronicotinamide Group 225
13.4	Conclusion 230
13.5	References 231

14	Metal-Containing Star and Hyperbranched Polymers
	Masami Kamigaito 233
14.1	Introduction
14.2	Metal-Containing Star Polymers 235
14.2.1	Metal-Containing Star Polymers with a Small
	and Well-Defined Number of Arms 236
14.2.2	Metal-Containing Star Polymers
	with a Large and Statistically Distributed Number of Arms 240
14.3	Metal-Containing Hyperbranched Polymers 243
14.4	Concluding Remarks 245
14.5	References 246
15	Electronic Properties of Helical Peptide Derivatives
	at a Single Molecular Level
	Shunsaku Kimura, Kazuya Kitagawa, Kazuyuki Yanagisawa,
	Tomoyuki Morita 249
15.1	Molecular Electronics 249
15.2	Electron Transfer Through Molecules
15.3	Electronic Properties of Helical Peptides 251
15.4	Electron Transfer Mechanism over a Long Distance 254
15.5	Effect of Linkers on Electron Transfer 254
15.6	Helical-Peptide Scaffold for Electron Hopping 256
15.7	Photocurrent Generation with Helical Peptides
	Carrying Naphthyl Groups 259
15.8	Conclusion
15.9	References 261
16	Construction of Redox-Induced Systems
	Using Antigen-Combining Sites of Antibodies
	and Functionalization of Antibody Supramolecules
	Hiroyasu Yamaguchi, Akira Harada 263
16.1	Introduction
16.2	Photoinduced Electron Transfer from Porphyrins
	to Electron Acceptor Molecules 266
16.2.1	Monoclonal Antibodies
	for meso-Tetrakis(4-carboxyphenyl)porphyrin (TCPP) 267
16.2.2	Photoinduced Electron Transfer from a Porphyrin
	to an Electron Acceptor in an Antibody-Combining Site 273
16.3	Peroxidase Activity of Fe-Porphyrin-Antibody Complexes 275
16.3.1	Preparation of Monoclonal Antibodies
	Against Cationic Porphyrins 276
16.3.2	Peroxidase Activity of Antibody-Fe-TMPyP Complex
16.4	Dendritic Antibody Supramolecules

16.5	Linear Antibody Supramolecules: Application
	for Novel Biosensing Method 285
16.5.1	Antiviologen Antibodies 286
16.5.2	Applications for Highly Sensitive Detection Method
	of Methyl Viologen by Supramolecular Complex Formation
	Between Antibodies and Divalent Antigens 287
16.6	Conclusions 289
16.7	References
Subject Index	