Contents

Preface to the English Translation V			
Author's Note (Preface to the Earlier Russian Edition) VII			
Part I	_		
What Problems of Physics and Astrophysics Seem Now			
to Be Especially Important and Interesting?	3		
Preamble	3		
Introduction	6		
List of 'Especially Important and Interesting Problems' (1995)	11		
Macrophysics	12		
1. Controlled Nuclear Fusion	12		
2. High-Temperature Superconductivity. Superdiamagnetism	18		
3. New Substances (Production of Metallic Hydrogen			
and Some Other New Materials)	24		
4. Some Problems of Solid-State Physics	27		
5. Phase Transitions of the Second Order and Similar Transitions			
(Critical Phenomena). Interesting Examples of Such Transitions	29		
6. Physics of Surfaces	35		
7. Liquid Crystals. Very Large Molecules. Fullerenes	37		
8. Matter in Superhigh Magnetic Fields	38		
9. X-ray Lasers, Grasers, and New Superpowerful Lasers	40		
10. Strongly Nonlinear Phenomena (Nonlinear Physics).			
Solitons, Chaos. Strange Attractors	45		
11. Superheavy Nuclei (Far Transuranic Elements). Exotic Nuclei .	47		
Microphysics	50		
12. What is Understood by Microphysics?	50		
13. Mass Spectrum. Quarks and Gluons. Quantum Chromodynamics	53		
14. Unified Theory of the Weak and Electromagnetic Interactions.			
W^{\pm} and Z^0 Bosons. Leptons	59		
15. Grand Unification. Proton Decay. Neutrino Mass.	0.0		
Magnetic Monopoles. Superunification. Superstrings	62		

16. Fundamental Length. Particle Interactions	
at High and Ultrahigh Energies	67
17. Violation of <i>CP</i> Invariance. Nonlinear Phenomena in Vacuum	n
and Superhigh Electromagnetic Fields. Phase Transitions	
in Vacuum. Some Comments on the Development	
of Microphysics	72
18. Microphysics Yesterday, Today, and Tomorrow	
Astrophysics	
19. Experimental Verification of the General Theory of Relativity	
20. Gravitational Waves	
21. The Cosmological Problem. Singularities	
in the General Theory of Relativity and Cosmology.	
Relationship between Cosmology and High-Energy Physics	93
22. Neutron Stars and Pulsars. Supernovae. Black Holes	
23. Quasars and Galactic Nuclei. Formation of Galaxies.	
Problem of Dark Matter (Missing Mass).	
Does Astronomy Require a 'New Physics'?	109
24. Origin of Cosmic Rays and Cosmic Gamma	
and X-ray Radiation. Gamma Bursts	119
25. Neutrino Astronomy	
26. The Contemporary Stage in the Development of Astronomy.	131
Concluding Remarks	
27. General Comments on Scientific Progress	
28. In Lieu of a Conclusion	138
References	142
What Problems of Physics and Astrophysics Seem Now to	\mathbf{Be}
Especially Important and Interesting (Thirty Years Lat	
Already on the Verge of the 21st Century)?	
1. Introduction	149
2. List of 'Especially Important and Interesting Problems' (1999)	. 152
3. Some Comments (Macrophysics)	154
4. Some Comments (Microphysics)	160
5. Some Comments (Astrophysics)	165
6. Three More 'Great' Problems	183
7. An Attempt to Predict the Future	187
References	193
Part II	
How Does Science Develop? Remarks on The Structure	
of Scientific Revolutions by T. Kuhn	201
Preamble	
1. The Subject Matter of the Book	
J	

	Contents	XI
2. General Assessment		203
3. The Principle of Correspondence and the Comp.		. 200
of a Theory in the Domain of Its Applicability		204
4. Unhistoric Notions		
5. The Exponential Law of Scientific Development		
6. 'Nonuniformity' and 'Limits' of Scientific Progre		
Concluding Remarks		
Who Created the Theory of Relativity and How	. Was It	
Developed? A Review with a Preamble and a		217
Preamble		
Review Text		
Commentary		
1. What Is the Special Theory of Relativity?		
2. Who Created the STR and How Was It Created		
3. Comments on Priority Issues		
4. The Source of Scientific Knowledge		
5. Science and Ethics		
D A N 1 (N Dh		0.41
Does Astronomy Need 'New Physics'?		
Introduction		
2. Is 'New Physics' Needed in Physics and Astronomy		
3. Possible Completeness of a Physical Theory	ипу:	. 245
in Its Applicability Range		240
4. Once Again about 'New Physics' in Astronomy		
Final Remarks		
Attachment		
Note to the English Translation		
References		
Telefolices		. 201
Physical Laws and Extraterrestrial Civilizations		259
Wide Scope and Up-to-Date Information as a P	recondition	
of Successful Research		265
Physics Stays Young. A Way of Answering the	Overtionneine	
in Nauka i Zhizn' Magazine	•	260
_		
Ten Years Later (1994)		
DIA TEATS LATER (2000)		. 410
On Popular Science and More		. 277
How Far Can Popular Science Go?		. 278
Can One Use Algebra in Popular-Science Writing?		281

XII Contents

How to Verify a Theory, and What Is the Role Played	
by the 'Scientific Public'?	282
Note to the English Translation	284
References	284
Notes on the Occasion My Jubilee	285
What This Is All About	
School	287
The Department of Physics	291
Majoring. Theorists and Experimenters	291
The Dependence of Scientists' Productivity on Age (until 60)	
On the Age Distribution of Scientists	
After 60 (on Old-Age Scientists)	
"There Are no Greater Dangers in Old Age Than Indolence	
and Idleness" (Cicero)	
A Kind of Conclusion	
Notes to the English Translation	307
A Scientific Autobiography – an Attempt	309
Contents	
1. Introduction	309
2. Classical and Quantum Electrodynamics	310
3. Radiation by Uniformly Moving Sources (the Vavilov-Cherenkov	
and Doppler Effects, Transition Radiation,	
and Related Phenomena)	313
4. About This Article	316
5. Higher Spins	318
6. Propagation of Electromagnetic Waves in Plasmas	
(in the Ionosphere). Radio Astronomy	319
7. Cosmic-Ray Astrophysics. Gamma-Ray Astronomy.	
Selected Astrophysical Results	323
8. Scattering of Light. Crystal Optics	
with Spatial Dispersion Taken into Account	324
9. Theory of Ferroelectric Phenomena. Soft Modes. Limits	
of Applicability of the Landau Theory of Phase Transitions	326
10. Superfluidity of Helium II near the Lambda Point.	
Other Publications on Superfluidity	329
11. Theory of Superconductivity	334
12. Concluding Remarks	339
References	341
Part III	
About Igor Evgenevich Tamm	351

A Piece of Advice Given by Leonid Isaakovich Mandelshtam . 361
On the 90th Anniversary of the Birth of Nikolai Dmitrievich Papaleksi
About Lev Davidovich Landau367A Remarkable Physicist367Further Thoughts371
To the Memory of Aleksandr Aleksandrovich Andronov 385
About Aleksandr Lvovich Mints
In Commemoration of Sergei Ivanovich Vavilov 395
A Story of Two Directors (S. I. Vavilov and D. V. Skobeltsyn) 397
To the Memory of Ilya Mikhailovich Frank
About Grigorii Samuilovich Landsberg 411
To the Memory of Evgenii Konstantinovich Zavoiskii 419
About Matvei Samsonovich Rabinovich
Mstislav Vsevoldovich Keldysh (A Detached View)
About Albert Einstein
In Memory of Niels Bohr
About Richard Feynman – a Remarkable Physicist and a Wonderful Man
John Bardeen and the Theory of Superconductivity 451
On High-Energy Astrophysics (On the 80th Birthday of Jan Oort)
The Sakharov Phenomenon
Notes on A. I. Solzhenitsyn, A. D. Sakharov, and the 'Crosswind'
About the Author