Contents

111	iroduction	J
1	Summary	y of most important results5
		pects of the ability to be innovative5
		pects of direction of innovation
		del of "innovation systems at supply chain level"8
		Tent developments in chemicals regulation
		requisites for success in hazardous substance substitution
	1.5.1	Substitution of hazardous substances is an innovation
		process like many others
	1.5.2	Chemicals innovations concern not only new substances, but
		also new preparations and applications
	1.5.3	Public and civilian society – combined with intensive competition
		- are powerful driving forces in the innovation system11
	1.5.4	Competition is the most important driving force for innovation
		- the demand for quality may create a direction for it
	1.5.5	Harmonised rules are needed for risk communication
		in the market
	1.5.6	Understanding complex innovation systems improves the
		ability to be innovative14
	1.5.7	Risk reduction too has to contend with conflicts of objectives 15
	1.5.8	Dealing with the "lack of knowledge" is a key to innovation -
		extended risk management is required
	1.5.9	Guiding principles may provide orientation but may also be
		misleading
	1.5.10	Simple rules for risk management are needed
	1.5.11	The entire range of opportunities to exert influence
		by the state has to be exploited
2		nation and analysis of deficits21
		stitution of hazardous substances – introduction and definitions 21
		case of asbestos – introduction to the subject
		v general framework conditions
2.3.1		Perception of environmental and health issues
	2.3.2	Scientific range of instruments
	2.3.3	From banning to range of control instruments30

	2.3.4	International integration	
	2.3.5	Substitution has priority – unfortunately not in practice	33
	2.3.6	Enforcement deficits	34
	2.3.7	Many substitution incentives originate from waste and	2.5
	220	waste water legislation	
	2.3.8 2.3.9	Markets and brands	
	2.3.10	Trade	
		aracterisation of the current EU regulatory system	
	2.4.1	Instruments for substance evaluation and risk information	
	2.7.1	installients for substance evaluation and fisk information	33
3	Approacl	1 to research and procedure	47
	3.1 Star	rting point in innovation research (driven by occupational	
		lth and safety and environmental protection)	
		zardous substance substitution as an innovation process	
		cedure used by SubChem	
	3.3.1	Research questions	51
	3.3.2	Case studies, hypotheses, model: understanding of chemicals-	
		related innovation systems	52
	3.3.3	Guiding principles and management solutions: orientation for	
	2.2.4	actors in the innovation system	
	3.3.4	Elements of intervening research? – Realisations and influencing	
		against the background of reorganisation of European chemicals	3
		policy	58
4	Case stud	y analysis and development of hypotheses	61
		luation and documentation of case studies	
	4.2 Sun	amary of thirteen case studies	
	4.2.1	Case study "Water-based cleaning of metal surfaces"	66
	4.2.2	Case study "Alternatives to reproduction-toxic plasticisers in	
		plastics"	69
	4.2.3	Case study "Biosoluble, man-made mineral fibres for	
		insulation in structures"	75
	4.2.4	Brief presentation of other case studies	
		potheses as a means of detection and a form of result	96
	4.3.1	Hypotheses – factors promoting and restricting substitution	98
5	Developin	ng the model – being innovative in an innovation system	100
	5.1 The	framework for an innovation system	110
	5.1.1	System inertia as the main barrier	
	5.1.2	Competition as the main driving force	
	5.1.3	The power of scandal.	

6	Deal	Dealing with lack of knowledge and uncertainties - a task for risk				
	man	agement	.119			
	6.1	Direction of innovation – dealing with uncertainties and lack of				
		knowledge	119			
	6.2	Putting the precautionary principle into practice	120			
	6.3	Substance development and technology design directed by guiding	120			
		principles	122			
	6.4	Managing quality at the level of the supply chain	124			
	6.5	Evaluation of the workshops on extended risk management				
		5.1 Workshop "From recycling management systems to sustainable	125			
		chemicals – models in chemicals development and substance				
		policy"	126			
	6	5.2 Workshop "Quality and risk management – approaches for the	140			
	٥.	integration of environmental and health aspects in corporate				
		management"	121			
		management	131			
7	Reco	ommendations for action	137			
	7.1	Commercial institutions	137			
	7.2	State institutions	138			
	7.3	Consumers and society	1/11			
			171			
8	Pros	pects and prospective questions	143			
		• •				
Bi	bliogr	aphy	145			
Ta	ble of	figures and tables	149			
<u>~-</u>						
Gl	ossary	y	151			